Solution 2 by Omran Kouba, Higher Institute for Applied Sciences and Technology, Damascus, Syria. Let f be the function defined for x > -1 by $f(x) = \ln(1+x)$, and let a be a positive real number. Using the Mean Value Theorem, there is a real number $\xi \in (0,a)$ such that

$$\frac{\ln(1+a)}{a} = \frac{f(a) - f(0)}{a} = f'(\xi) = \frac{1}{1+\xi} \in \left(\frac{1}{1+a}, 1\right).$$

that is, for a > 0, we have

$$\frac{a}{1+a} < \ln(1+a) < a.$$

Applying the upper inequality with a = 1/n and the lower one with a = 1/m, we get

$$n\ln\left(1+\frac{1}{n}\right) < 1 < (m+1)\ln\left(1+\frac{1}{m}\right)$$

Taking exponentials yields the desired inequality.

Also solved by Arkady Alt, San Jose, California, USA, Paolo Perfetti, Department of Mathematics, Tor Vergata University, Rome, Italy, and José Gibergans-Báguena, BARCELONA TECH, Barcelona, Spain.

58. Let $x = 2\cos A$, $y = 2\cos B$ and $z = 2\cos C$, where A, B, C are the measures of the angles of an acute triangle ABC. Find the minimum value of

$$x^4 + y^4 + z^4 + x^2y^2z^2$$

(Training Catalonian Team for OME 2014)

Solution 1 by Arkady Alt, San Jose, California, USA. By replacing $(\cos A, \cos B, \cos C)$ in identity

$$\cos^2 A + \cos^2 B + \cos^2 C + 2\cos A\cos B\cos C = 1$$

with $\left(\frac{x}{2}, \frac{y}{2}, \frac{z}{2}\right)$ we obtain

$$\frac{x^2}{4} + \frac{y^2}{4} + \frac{z^2}{4} + 2 \cdot \frac{x}{2} \cdot \frac{y}{2} \cdot \frac{z}{2} = 1$$

Thus

$$x^2 + y^2 + z^2 + xyz = 4$$

Since triangle ABC is acute, that is x,y,z>0, then by QM-AM inequality we have $\frac{x^4+y^4+z^4+x^2y^2z^2}{4}\geq \left(\frac{x^2+y^2+z^2+xyz}{4}\right)^2=1 \implies x^4+y^4+z^4+x^2y^2z^2\geq 4.$

Since the lower bound 4 can be attained if $x = y = z \iff A = B = C$, the desired minimum is 4.

Solution 2 by José Luis Díaz-Barrero BARCELONA TECH, Barcelona, Spain. Since $A + B + C = \pi$, then we have

$$x^{2} + y^{2} + z^{2} + xyz = 4\cos^{2} A + 4\cos^{2} B + 4\cos^{2}(A + B)$$
$$- 8\cos A \cos B \cos(A + B)$$
$$= 4(\cos^{2} A + \cos^{2} A - \cos^{2} A \cos^{2} A + \sin^{2} A \sin^{2} B)$$
$$= 4\left[\sin^{2} B(\cos^{2} A + \sin^{2} A) + \cos^{2} B\right] = 4$$

Taking into account AM-QM inequality yields

$$1 = \frac{x^2 + y^2 + z^2 + xyz}{4} \le \sqrt{\frac{x^4 + y^4 + z^4 + x^2y^2z^2}{4}}$$

from which follows $x^4 + y^4 + z^4 + x^2y^2z^2 \ge 4$. So, the minimum value of the expression claimed is 4 and it is attained when $\triangle ABC$ is equilateral.

Solution 3 by Omran Kouba, Higher Institute for Applied Sciences and Technology, Damascus, Syria. The answer is 4 and it is attained only when the triangle is equilateral.

First, note as in the preceding solutions we have

$$x^2 + y^2 + z^2 + xyz = 4$$

Thus.

$$x^{4} + y^{4} + z^{4} + x^{2}y^{2}z^{2} - 4 = x^{4} + y^{4} + z^{4} + x^{2}y^{2}z^{2} - 2(x^{2} + y^{2} + z^{2} + xyz) + 4$$
$$= (x^{2} - 1)^{2} + (y^{2} - 1)^{2} + (z^{2} - 1)^{2} + (xyz - 1)^{2} \ge 0$$

with equality if and only if $x^2 = y^2 = z^2 = xyz = 1$, or equivalently $A = B = C = 60^{\circ}$.

Remark. Note that the condition that ABC is acute is unnecessary.

Solution 4 by Paolo Perfetti, Department of Mathematics, Tor Vergata University, Rome, Italy. It is a known standard result that $1 \le \cos A + \cos B + \cos C \le 3/2$ and then $2 \le 2\cos A + 2\cos B + 2\cos C \le 3$. The minimum 1 corresponds to a degenerate isosceles triangle while the maximum to an equilateral triangle. Clearly we have $2 \le x + y + z \le 3$. We employ the so called "uvw" theory which can be found at The art of problem solving forum. Define three new quantities

$$x + y + z = 3u$$
, $xy + yz + zx = 3v^2$, $xyz = w^3$

We have

$$x^4 + y^4 + z^4 + x^2y^2z^2 = (w^3)^2 + 12uw^3 + 81u^4 - 108u^2v^2 + 18v^4 = (w^3)^2 + 12uw^3 + R(u, v)$$

This is a convex increasing parabola if $w^3 \geq 0$ whose minimum has negative abscissa. It follows that the minimum of the parabola occurs when w=0 or when w is minimum once fixed the values of u and v. According to the theory, the latter occurs when x=y (or cyclic). If w=0 we have for instance z=0 that is $C=\pi/2$. At x+y fixed, the minimum of x^4+y^4 , occurs when x=y that is $A=B=\pi/4$ or $z=y=\sqrt{2}$. This yields

$$x^4 + y^4 = 2x^4 = 8$$